
permeability of vacuum; ~, magnetic susceptibility; H0, intensity of the external magnetic 
field; n x, demagnetizing factor; S, dimensionless complex. 
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DIFFUSION-CONVECTION MODEL OFGRAVITATIONAL SEPARATION 

IN A POLYDISPERSE SUSPENSION 

V. G. Deich UDC 622.762 

A model of the evolution of the volume concentration fields of the separate 
fractions ofa polydisperse suspension is presented. For the case of two 
fractions a solution is obtained in the static regime illustrating the mechanism 
of separation with respect to particle size. 

The majority of papers onthe mathematical modeling of disperse flows in technological 
apparatus use a system of equationsfor a multivelocity continuum [i]. The hyperbolic nature of 
this systemleadsto solutions of thewave type with very sharp surfaces of discontinuity 
(see, for example, [2]). Inpractice, however, the concentration fields of the components of 
a disperse~xture are spread out, andthis implies that the equations describing their evolution 
are parabolic. In [3] aparabolicequationwasintroduced~(the Fokker--Planck equation) for 
the distribution functions of the velocities and positions of solid particles in a suspen- 
sion, taking into account random forces ofthewhis noise type which act on the particles. 
Such forces can result from the turbulence of the flow of the liquid phase [4], but, as indi- 
cated in [5], often laminar motion exists as well. 

In the present paper we derive a system of equations of the parabolic type for the con- 
centration fields of narrow fractions of a polydisperse suspension. It is assumed that the 
temporalviscous relaxation of the velocities of the solid particles can be neglected and 
that their steady-state values are determinedwith the help of well-known semiempirical form- 
ulas. 

Wewrite the equation of motion of a particle in the Stokes regime of sedimentation: 

Pv~da dt---Lt = .. (Pv--- Pf) nd3g .. + 3 ~ d O  (c) w + F '  (t), 
6 dt 6 (Z) 

where the dimensionless function ~(c) takes into account the effect of the other particles 
(hindrance) on the hydrodynamical drag. Itis assumed that the most important contribution 
to the stochastic term F'(t) comes from fluctuations in c: 

dO Ac, (2) F ' =  3 ~ d (  w > dc 
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where < Ac(0Ac(t')> = a~K(t--t ') (the angular brackets denote an average of the quantity inside), 

If the decay time of the correlation function of the fluctuations is small, then one can put, 

approximately [6] 

< Ac( t )Ac( t ' )>=#TS( t - - t ' ) ,  (3) 

where T = 1/2 S K(l)dt and the process F' (t) is then assumed to be white noise. Equation (i) 

can be rewritten in the form 

~, d-!u = u~ (c) + w +  -l/g-O~(t), (4) 

where 

�9 (pp__pt)d2g o2(w>2T ( d lnO))z  x ~ =  f-~'d2 ; u ~ ( c ) -  �9 D =  
18I~Cl) (c) 18,tt~ (c) ' 2 dc 

The quantiti s T s and u s are the relaxation time and the steady-state value of the sedi- 
mentation velocity in the presence of hindrance. In correspondence with the remarks made in 
the Introduction, we assume that Ts<<l and therefore the left-hand side of (4) can be ne- 

glected. In this case we have from (4): 

dz 
---- u (0 = u, (c) + v + V-~D ~ (t), 

dt (5) 

and, since we obviously have <w> =--uS(c), we obtain the following relation for the diffusion 
coefficient 

D c;2T(uS(c))~ ( d l n ~ )  2 
2 dc (6)  

Hence z(t) is a diffusion process, ..and~ the probability density of this process can be de- 
scribed by the Fokker--Planck--Kolmogorov equation [6] 

Op _ a (D OP _(u~ + v)p]. 
(7) at az k az ] 

We assume now that we have n types of solid.particles of different sizes d i, i = i, 2, ..., no 
Then for each type' of par.ticl.e one can write an equation of the type (7), where the quantities 
D and u s .depend on the index i: 

Op, = 0 (D, OP-----L--~ --(u~+v)p~ ) ,  i =  1 , 2  . . . .  n. 
Ot Oz az ' (8) 

Then t h e  c o e f f i c i e n t s  Di and u s .in ( 8 ) a r e  f u n c t i o n s  o f  c = 2 ci In o r d e r  to  o b t a i n  a 
i = I  

closed system of equations from (8), we note that in corresponaence with the law of large 
numbers there is the direct proportionality el(z, t) ~ pi(z, t). Thus (8) can be transformed 
to the system 

Oci _ O Di (u i-l-v) ci i =  I, 2 . . . .  n. 
at Oz Oz , , ( 9 ) 

We can express the velocity of motion of the fluid v in terms of the ci. In order to do this 
we use the fact that if the suspension as a whole is at rest with respect to the walls of 
the apparatus, then we have the condition 

(1 - -  c) v + ~.. c~ui = O, 
i=l-- ( i0) 

where u i = u s. + v is the mean velocity of motion of particles of the i-th kind with respect to 
the walls of the vessel. It follows from (i0) that 
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v -- ~ ciu~(c). (ii) 
i=l 

We note that relation (ii), and the formulas for the sedimentation velocities of narrow 
fractions in a homogeneous (el = const) suspension which follow from this relation have been 
experimentally verified in [7]. Substituting (ii) into (9), we obtain aclosed system of 
nonlinear parabolic equations for the volume concentration 9ields el(z, t) of the fractions. 
The nonlinearity of the system (9) comes from the fact that its coefficients Di, u~, and v 
are functions of the e i. 

Up to now we have assumed that there is no source of the suspension and that the sus- 
pension does not move as a whole with respectto the walls of the apparatus. In the mathe- 
matical modelling of a continuously operating apparatus both of these effects must be taken 
into account. This is easily done (see [8]) by adding a term to the right-hand side of (9) 
describing the distribution density of sources of the suspension, and by adding the term vo(z) 
to u~ + v, where v0(z) is equal to the velocity of motion of the suspension, averaged over the 
cross section of the apparatus. 

We consider the procedure for calculating in our model the concentration fields of the 
separate fractions for separation in a cylindrical apparatuswhose axis is directed downwards. 
We take this axis~to be the z axis and the origin is in the upper end of the cylinder. A 
polydisperse suspensionis fed through a tube along the z axis, and the end of the tube is 
at the point z0 (0 < z0 < H). We neglect the diameter of the feeding tube, and therefore 
consider the source of the suspension to be apoint source. The system of equations (9) for 
the cross-sectional averages of the concentrations of the narrow fractions can:then be written 
in the form 

( ) ~ _ _  _ _  dci Qc~ o .  0c~ _ c3 D,----(u~(c)+V+Vo(Z))C~ + ~ o t z - - Z o )  
Ot Oz Oz (12) 

(compare with [8], where the case of a monodisperse suspension was considered). From the 
balance condition with respect to the volume of the suspension we obtain for the velocity 
averaged over the cross section of motion of the suspension with respect to the walls of the 
vessel 

{ Qu/zR ~, Zo ~ Z <~ H, 
v o ( z ) =  ( O - - O ~ ) / z R  ~, O<~z<zo. (13 )  

We note that the "effective" diffusion coefficients in (12) can be quite different from (6) 
because of the contributionto the longitudinal mixing of the nonuniformity of the velocity of 
the suspension with respect to the cross section of the apparatus, i.e., its difference from 
v0(z);thisis the so-called:Taylor--Arisadiffusion [9]. 

I/1(12) it isconvenient to transform toadimensionless coordinate and time by dividing 
n n 

5os sides by the eharacs sedimentation velocity us= (Xc~ u s (0)) {~ c 9h-I 
by H. The system (12) then takes the form ,=I [~--* ~) and multiplying 

dc, _ O ( l dc~ ) 
Ox Ox Pel dx h (ci, c2 . . . . .  cn) + ~o 6 (x-- xo), (14) 

where x = z/H; �9 = uSt/H; Pei = uSH/D6 ~ = Q/~R2uS , and 

n 
s �9 s 

(15) i, (c1, . . . . .  c.) = - 2 -  ( " 
k = l  

is the dimensionless flux of the i-th fraction. 

The s y s t e m  ( 1 4 )  mus t ,  b e  s u p p l e m e n t e d  b y  t h e  i n i t i a l  ( a t  "r = 0)  a n d  b o u n d a r y  ( a t  x = 0 
a n d  x = 1 )  c o n d i t i o n s .  As s h o w n  i n  [ 8 ] ,  f o r  t h e  r e g i m e  c o n s i d e r e d  h e r e  o n e  c a n  t a k e  a s  t h e  
boundary conditions 

1 Oc~ t Pei Ox ]i x=o = c, (0) (13--- ~z), ( 1 6 )  
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1 OC i Ii i . . . .  Ci(1) ~, (17) 
Pe,~ ax x=1 

where ~=Qu/~R2u s . The conditions (16) and (17) mean that the total fluxes of each fraction 
on the upper and lower ends of the cylinder are equal to the amount of that fraction carried 
away per unit timeby the suspension flowing through the corresponding end. 

It is still necessary to specify the function~ (c), which takes into account the hindrance 
of sedimentation. The well-known empirical formula of Richardson and Zaki has the form 
~ ( C ) = ( l - - c )  -4m5 A somewhat different dependence was used to comparethe theoretical and 
and experimental results in [7], however it can be shown thatthis difference is quite insig- 
nificant for c~<0.5. 

As an example of the use of the model given by (12), (16), and (17), we consider the 
concentration fields of large (i = i) and small (i = 2) grains in the static regime for the 
case of a bifractional (n = 2) suspension feed. In the static regime the quantities ~, ~, 
c?,c~ are constants, and acl/ST =ac~/aT = o. Under these conditions the system (12) with the 
boundary conditions (16) and (17) is easily reduced (see [8]) to the following nonlinear 
boundary-value problem for a system of two ordinary differential equations: 

dc, = Pei (1~ (cl, c2) + (~ - -  ~) ci (0) -[- ~c ~ 0 (x - -  xo), 
dx 

c i ( O ) ( l ~ - - ~ x ) + c ~ ( 1 ) = =  I~c ~ i =  1, 2. 

(18) 

(19)  

where 0 in (18) denotes the Heaviside unit step function: e(x) = 0 for x~0 and e(x) = i for 
X > O- 

Equations (18) and (19) were solved numerically by reducing them to an initial-value 
problem. For a fixed pair of initial values cz(O) and c2(0), the Cauchy problem was solved 
for the system (18) with these initial values and the "errors"si~-ci(0)(~--~)+ci(l~--~c~(O) , 
i ffi I, 2 were calculated. This procedure was continued until the quantities 185~[ became 
less than a given value. We note that there is a simple physical interpretation of this 
condition: since (19) is the balance condition with respect to each of the fractions, the 
smallness of the error corresponds to a smallness of the "imbalance." 

In the solution the following values were usedfor the constants (these correspond to 
conditions for gravitational separation in industrial potassium fertilizer):H = 3 m, R = 
12 m, z0 = 0.6 m, Q = 0. i m3/sec, Qu = 0.02 m3/sec, dz = 5"10 -4 m, dz = 10 -4 m, DI = 0.02 
mZ/sec, D2 = 0.007 mZ/sec, cz ~ = ce ~ = 0.02, pp = 2.4.103 kg/m 3, pf = 1.2.103 kg/m 3, ~ = 
1.9.10 -3 Pa-sec. The allowed relative error (imbalance) for eachof the fractions was taken 
to be 0.05. 

From the calculation we obtained the static profiles of the volume concentrationsof the 
fractions, as shown in Fig. i. Curve land 2 graphically demonstrate the significant differ- 
ence between the two fractions. The concentration of the large grains monotonically increases 
with depth, whereas the dependence for the small grains has a maximum at x = 0.7. This is 
the point where the convective part of the flux is of the small-grain fraction changes sign, 
i.e., the small grains move downward on average for x < 0.7 and upward for x > 0.7. This 
behavior can be explained by the fact that when x >.0.7 there is a sudden increase in the 
volume concentration of the large grains moving downward and this causes an increase in the 
velocity of the displaced fluid upward, which in turn carries with it the small grains. 

The available experimental data is such that the calculated profiles ci(x) cannot be 
compared to the actual ones (we note that for a monodisperse suspension such a comparison was 
given in [8]). Nevertheless, indirect experimental support for our results can be obtained as 
follows. The effectiveness of the separation is taken to be characterized by the change in the 
grain-size composition of the suspension of the top (at x = 0) and the bottom (at x = I) in 
comparison with the composition of the suspension feed. In the example considered here, the 
calculated fractions of large and small grains in the feed was 0.5 and 0.5; at the top it was 
0.84 and 0.16, respectively, and at the bottom it was 0.005 and 0.995, respectively. If we 
represent a real suspension feed as bifractional with different contents of large and small 
grains, then experimentally the following fractions are obtained: 0.76 and 0.24 at the top and 
0.009 and 0.991 at the bottom, and these values are in satisfactoryagreement with the theo- 
retical values. 
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Fig. i. Static profiles of the 
volume contents of large 
(curve i) and small (curve 2) 
grains in the continuous separ- 
ation regime. 

Finally wenote thatalthough the general structure of our model is rather firmly based 
on accepted theoretical premises, the concrete expressions for the convective fluxes and 
particularly for the coefficie~tsofld• are subject to further refinement. Our re- 
suits show that the model obtained herecan be useful in describing realisticprocesses even 
with the simplest assumptions such as the independence of the coefficients of diffusion on c. 
In this approach, a "theoretical" dependence of the type (6) is used only to estimate the 
orderof magnitude of these coefficients, and their final values are selected by fitting the 
parameters of the model to experiments. 

NOTATION 

c, c~, volume content ofthe solid phase inthe apparatus andfeed; d, linear dimension 
of the solid particles, m; D, coefficient of diffusion, mZ/sec; i, index enumerating the 
narrow fractions of the solid phase; K, normalized correlation function of the concentration 
fluctuations of the solid phase; H, R, height and radius of the apparatus, m; u, v, w, 
velocityof the solidphase, fluid andrelative velocity, m~sec;Q, Qu, volume flow rate of 
the suspension in the feed and~underflow, m3/sec; z, coordinate along the axis of the appara- 
tus, m; ~ viscosity of the fluid phase, Pa-sec; pp, pf, density of the solid particles and 
density of the fluid, kg/m3; ~Z, variance of theconcentration fluctuations of the solid 
phase; ~(t) standard whitenoise with unit intensity. 
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